
K Y BE R NE T IK A — VO L UM E 4 6 ( 2 0 1 0 ) , NU MB E R 3 , P AGE S 4 8 8 – 5 0 0

MEASURING OF SECOND–ORDER STOCHASTIC
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Miloš Kopa

In this paper, we deal with second-order stochastic dominance (SSD) portfolio efficiency
with respect to all portfolios that can be created from a considered set of assets. Assuming
scenario approach for distribution of returns several SSD portfolio efficiency tests were pro-
posed. We introduce a δ-SSD portfolio efficiency approach and we analyze the stability of
SSD portfolio efficiency and δ-SSD portfolio efficiency classification with respect to changes
in scenarios of returns. We propose new SSD and δ-SSD portfolio efficiency measures as
measures of the stability. We derive a non-linear and mixed-integer non-linear programs
for evaluating these measures. Contrary to all existing SSD portfolio inefficiency measures,
these new measures allow us to compare any two δ-SSD efficient or SSD efficient portfo-
lios. Finally, using historical US stock market data, we compute δ-SSD and SSD portfolio
efficiency measures of several SSD efficient portfolios.
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1. INTRODUCTION

When solving portfolio selection problem several approaches can be used: mean-risk
models, maximising expected utility problems, stochastic dominance criteria, etc.
If the information about the risk attitude of a decision maker is not known one
may adopt stochastic dominance approach to test an efficiency of a given portfolio
with respect to a considered set of utility functions. If only non-satiation and risk
aversion of decision maker is assumed, that is, concave utility functions are consid-
ered, second-order stochastic dominance (SSD) relation allows comparison of any
two portfolios.

Stochastic dominance was introduced independently in Hadar & Russel [6], Hanoch
& Levy [7], Rothschild & Stiglitz [20] and Whitmore [23].1

The definition of second-order stochastic dominance relation uses comparisons of
either twice cumulative distribution functions, or expected utilities (see for example
Levy [13]). Alternatively, one can define SSD relation using cumulative quantile
functions or conditional value at risk (see Ogryczak & Ruszczyński [15] or Kopa &
Chovanec [9]).

1For more information see Levy [13].
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Similarly to well-known mean-variance criterion, second-order stochastic domi-
nance relation can be used in portfolio efficiency analysis. A given portfolio is called
SSD efficient if there exists no other portfolio preferred by all risk-averse and risk-
neutral decision makers (see for example Ruszczyński & Vanderbei [21], Kuosmanen
[12] or Kopa & Chovanec [9]).

To test SSD portfolio efficiency of a given portfolio relative to all portfolios created
from a set of assets Post [17], Kuosmanen [12] and Kopa & Chovanec [9] proposed
several linear programming algorithms. While the Post test is based on represen-
tative utility functions and strict SSD efficiency criterion, the Kuosmanen and the
Kopa-Chovanec test focuses on identifying a SSD dominating portfolio. The last
two tests can be formulated as optimization problems with SSD constraints. Simi-
lar types of problems were discussed in Dentcheva & Ruszczyński [2, 3, 4], Rudolf
& Ruszczyński [5] and Luedtke [14]. In these papers, weak stochastic dominance
relation is used, contrary to SSD portfolio tests where strict stochastic dominance
relation is considered.

For SSD inefficient portfolios, several SSD portfolio inefficiency measures were
introduced in Post [17], Kuosmanen [12] and Kopa & Chovanec [9]. These mea-
sures are based on a “distance” between a tested portfolio and some other portfolio
identified by a SSD portfolio efficiency test.

In all SSD portfolio efficiency tests, the scenario approach is assumed, that is,
the returns of assets are modeled by discrete distribution with equiprobable scenar-
ios. Therefore, especially for SSD efficient portfolios, one can ask how the original
scenarios can be changed such that a given SSD efficient portfolio remains SSD ef-
ficient for perturbed scenarios, too. To circumvent this problem, Kopa & Post [10]
suggested bootstrap techniques for first-order stochastic dominance (FSD) portfolio
efficiency and Kopa [11] for SSD portfolio efficiency. In both cases, the inefficiency
of a US stock market portfolio was detected with more than 95% significance. Al-
ternatively, Dentcheva, Henrion and Ruszczyński [1] used a general stability results
in stochastic programming (see Rőmisch [19]) for optimization problems with weak
FSD constraints.

In this paper, we introduce a δ-SSD portfolio efficiency as a new type of portfolio
efficiency with respect to second-order stochastic dominance criteria.

Fixing the number of equiprobable scenarios, we identify the maximal perturba-
tion of original scenarios satisfying δ-SSD portfolio efficiency condition for a given
portfolio. The magnitude of this maximal perturbation, expressed in terms of a
distance between original and perturbed scenarios, can be considered as a measure
of δ-SSD efficiency and the limiting case for δ → 0 leads to a new SSD efficiency
measure. We consider only special perturbations where all scenarios are equiprob-
able and the number of scenarios is fixed. The more general approach can not be
used because all SSD portfolio efficiency tests were developed only for equiprobable
scenarios.

Contrary to the SSD inefficiency measures discussed above, δ-SSD and SSD port-
folio efficiency measures are defined as measures of stability. In comparison with
bootstrap techniques suggested by Kopa & Post [10] and Kopa [11], this new stabil-
ity approach is more robust because it is not based only on a subsampling of given
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scenarios. The results reached in Dentcheva, Henrion and Ruszczyński [1] for opti-
mization problems with weak FSD constraints can probably be extended for weak
SSD constraints. However, this extension would be too technically and computa-
tionally demanding for SSD portfolio efficiency testing based on scenario approach
and strict SSD relation. Moreover, the general stability results do not deal with any
measure of stability.

We apply our stability analysis to the historical US stock market data (six Famma
and French portfolios and a riskless asset) in order to compute the values of our
δ-SSD and SSD portfolio efficiency measures for two SSD efficient portfolios. As
the first portfolio, we choose the portfolio with the highest mean return. Since
CVaR is consistent with SSD relation we find the second portfolio by solving mean-
CVaR problem. For more details about the consistency see Ogryczak & Ruszczyński
[15]. Another way of identifying a SSD efficient portfolio satisfying some required
properties was presented in Roman, Darby-Dowman, and Mitra [18].

The remainder of the paper is organized as follows. The Preliminaries section
starts with notation, assumptions and definitions for the SSD relation and SSD
portfolio efficiency. We introduce a δ-SSD relation and δ-SSD portfolio efficiency
as a new type of SSD relation and SSD portfolio efficiency. It is followed by a
section dealing with SSD portfolio efficiency test derived in Kuosmanen [12] and
it’s modification for δ-SSD portfolio efficiency. In Section 4, we state our main
stability ideas and we introduce new measures of SSD portfolio efficiency and δ-
SSD portfolio efficiency as measures of stability. Using US stock market data, the
final section presents a numerical illustration where we compute the δ-SSD and SSD
portfolio efficiency measures for two SSD efficient portfolios .

2. PRELIMINARIES

We consider a random vector r = (r1, r2, . . . , rN )′ of returns of N assets with a
discrete probability distribution described by T equiprobable scenarios. The returns
of the assets for the various scenarios are given by

X =











x1

x2

...
xT











where xt = (xt
1, x

t
2, . . . , x

t
N ) is the tth row of matrix X . We will use λ =

(λ1, λ2, . . . , λN )′ for a vector of portfolio weights and the portfolio possibilities are
given by

Λ = {λ ∈ R
N |1′

λ = 1, λn ≥ 0, n = 1, 2, . . . , N}.

Alternatively, one can consider any bounded polytope:

Λ′ = {λ ∈ R
N |Aλ ≥ b}.

The tested portfolio is denoted by τ = (τ1, τ2, . . . , τN )′. Following Ruszczyński and
Vanderbei [21], Kuosmanen [12], Kopa and Chovanec [9], we define second-order
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stochastic dominance relation in the strict form in the context of SSD portfolio
efficiency. Let Fr

′λ(x) denote the cumulative probability distribution function of
returns of portfolio λ. The twice cumulative probability distribution function of
returns of portfolio λ is defined as:

F
(2)
r
′λ

(t) =

∫ t

−∞

Fr
′λ(x) dx. (1)

Definition 2.1. Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by second-order stochas-
tic dominance (r′λ ≻SSD r′τ ) if and only if

F
(2)
r
′λ

(t) ≤ F
(2)
r
′τ

(t) ∀ t ∈ R

with strict inequality2 for at least one t ∈ R.

The following SSD criteria can be used as alternative definitions of the SSD
relation:

(i) r′λ ≻SSD r′τ if and only if Eu(r′λ) ≥ Eu(r′τ ) for all concave utility functions
u provided the expected values above are finite and strict inequality is fulfilled
for at least some concave utility function, see for example Levy [13].

(ii) r′λ ≻SSD r′τ if and only if F
(−2)
r
′λ

( p
T

) ≥ F
(−2)
r
′τ

( p
T

) for all p = 1, 2, . . . , T with

strict inequality for at least some p where the second quantile function F
(−2)
r
′λ

is the convex conjugate function of F
(2)
r
′λ

in the sense of Fenchel duality, see
Ogryczak & Ruszczyński [15]. Let k = T − p. Since

CVaR1− p

T
(−r′λ) = −

F
(−2)
r
′τ

( p
T

)
p
T

for all p = 1, 2, . . . , T , where conditional value at risk (CVaR) can be defined
via the optimization problem:

CVaR k
T

(Y ) = min
a,wt

a +
1

(1 − k
T

)T

T
∑

t=1

wt (2)

s.t. wt ≥ yt − a

wt ≥ 0,

we can alternatively formulate the criterion in the following way: r′λ ≻SSD r′τ
if and only if CVaR k

T
(−r′λ) ≤ CVaR k

T
(−r′τ ) for all k = 0, 1, . . . , T − 1 with

strict inequality for at least some k. See Kopa and Chovanec [9], Uryasev &
Rockafellar [22] and Pflug [16] for details.

2This type of SSD relation is sometimes referred to as the strict second-order stochastic dom-
inance. If no strict inequality is required then the relation can be called the weak second-order
stochastic dominance.
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(iii) r′λ ≻SSD r′τ if and only if there exists a double stochastic matrix W = {w}ij

such that (WXτ ≤ Xλ and 1′WXτ < 1′Xλ) or (WXτ = Xλ and
∑T

i=1 wii <

T ) where 1′ = (1, 1, . . . , 1). See Kuosmanen [12] and Hardy, Littlewood & Polya
[8] (Theorem 46) for details.

Since 1′W = 1′ for all double stochastic matrices W, using criterion (iii) we define
a new type of SSD relation.

Definition 2.2. Let δ > 0. Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by the δ-
second-order stochastic dominance (r′λ ≻δ−SSD r′τ ) if there exists a double stochas-
tic matrix W = {w}ij such that Xλ ≥ WXτ and 1′Xλ − 1′Xτ ≥ δ.

The strictly positive parameter δ in Definition 2 is chosen sufficiently small, that
is, such that if Xλ ≥ WXτ and 1′Xλ − 1′Xτ < δ then vectors Xλ and WXτ are
empirically indistinguishable.3 It is easily seen that if portfolio λ δ-SSD dominates
portfolio τ for some δ > 0 then λ SSD dominates τ . On the other hand, SSD
relation need not imply δ-SSD relation for any δ > 0. Hence, δ-SSD relation for
some δ > 0 is only sufficient condition of SSD relation.

Definition 2.3. A given portfolio τ ∈ Λ is SSD inefficient if and only if there exists
portfolio λ ∈ Λ such that r′λ ≻SSD r′τ . Otherwise, portfolio τ is SSD efficient.

This definition classifies portfolio τ ∈ Λ as SSD efficient if and only if no other
portfolio is better (in the sense of the SSD relation) for all risk averse and risk
neutral decision makers. Another definition of SSD efficiency was presented in Post
[17]. Based on Definition 2, we can similarly define δ-SSD portfolio efficiency.

Definition 2.4. A given portfolio τ ∈ Λ is δ-SSD inefficient if and only if there
exists portfolio λ ∈ Λ such that r′λ ≻δ−SSD r′τ . Otherwise, portfolio τ is δ-SSD
efficient.

Since δ-SSD relation implies SSD relation, δ-SSD portfolio efficiency is a necessary
condition of SSD portfolio efficiency, that is, every SSD efficient portfolio is δ-SSD
efficient for all strictly positive δ.

3. SSD AND δ–SSD PORTFOLIO EFFICIENCY TEST

In this section we present the linear programming test of SSD portfolio efficiency
in the form of necessary and sufficient condition derived in Kuosmanen [12]. From
the three SSD efficiency tests: the Post test [17], the Kopa–Chovanec test [9] and
the Kuosmanen test [12], we choose the last one, because the Kuosmanen test can
be easily modify to a new δ-SSD efficiency test. The Kuosmanen test is based on
criterion (iii) and it tries to identify a portfolio λ ∈ Λ that SSD dominates the given
portfolio τ .

3This kind of approximation is sometimes used in empirical finance.
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Lemma 3.1. (The Kuosmanen test) Let

θ∗ = max
W,λ

T
∑

t=1

(

xt
λ − xt

τ
)

(3)

s.t. Xλ ≥ WXτ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T

λ ∈ Λ

and

θ∗∗ = min
W,λ,S+,S−

T
∑

j=1

T
∑

i=1

(s+
ij + s−ij) (4)

s.t. Xλ = WXτ

s+
ij − s−ij = wij −

1

2
i, j = 1, 2, . . . , T

s+
ij , s

−

ij , wij ≥ 0 i, j = 1, 2, . . . , T

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1 i, j = 1, 2, . . . , T

λ ∈ Λ

where S+ = {s+
ij}

T
i,j=1, S− = {s−ij}

T
i,j=1 and W = {wij}

T
i,j=1. Let ǫk denote the

number of k-way ties in Xτ .4 Then portfolio τ is SSD efficient if and only if

θ∗ = 0 ∧ θ∗∗ =
T 2

2
−

T
∑

k=1

kǫk.

Let λ
∗ and λ

∗∗ be the optimal solution of (3) and (4), respectively. If θ∗ > 0 then

r′λ∗ ≻SSD r′τ . If θ∗ = 0 and θ∗∗ < T 2

2 −
∑T

k=1 kǫk then r′λ∗∗ ≻SSD r′τ .

If θ∗ > 0 then problem (4) need not to be solved, because portfolio τ is SSD
inefficient and the optimal solution λ

∗ is a SSD dominating portfolio, see Kuosmanen
[12] for more details.

If a given portfolio τ is SSD inefficient then, from the entire set of SSD dominating
portfolios, the Kuosmanen test identifies that with the highest mean return. That
is, (3) and (4) can be reformulated in the following way:

max
λ∈Λ

f(λ, τ ) (5)

s.t. r′λ ≻SSD r′τ , (6)

where f(λ, τ ) = T (E(r′λ) − E(r′τ )) =
∑T

t=1 xt
λ − xt

τ .

4We say that a k-way tie occurs if k elements of Xτ are equal to each other.
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Problem (5) – (6) is an optimization problem with a stochastic dominance con-
straint. Contrary to problems discussed in Dentcheva & Ruszczyński [2, 3, 4], Rudolf
& Ruszczyński [5] and Luedtke [14], the stochastic dominance constraint (6) is in
the strict form.

The optimal value θ∗ of (3) can be considered as a measure of SSD portfolio in-
efficiency. It gives us information about the maximal possible difference, expressed
in mean return (or sum of returns), between the tested portfolio and a SSD domi-
nating portfolio. The alternative SSD portfolio inefficiency measures arise from the
Post test and the Kopa–Chovanec test. All these three measures allow comparison
of two SSD inefficient portfolios. Unfortunately, these measures are not suitable for
SSD efficiency measuring, because all these measures are equal to zero for all SSD
efficient portfolios. Therefore, for SSD portfolio efficiency measuring, we suggest
another approach, based on the δ-SSD portfolio efficiency and stability of δ-SSD
portfolio efficiency classification. Firstly, we modify the Kuosmanen test to δ-SSD
portfolio efficiency test.

Lemma 3.2. (The δ-SSD portfolio efficiency test) Let

θ∗δ = max
W,λ

T
∑

t=1

(

xt
λ − xt

τ
)

(7)

s.t. Xλ ≥ WXτ

T
∑

t=1

(

xt
λ − xt

τ
)

≥ δ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T

λ ∈ Λ.

If an optimal solution of (7) exists then portfolio τ is δ-SSD inefficient and r′λ∗ ≻δ−SSD

r′τ . Otherwise, τ is δ-SSD efficient portfolio.

The proof of Lemma 3.2 directly follows from Lemma 3.1, criterion (iii), Defini-
tion 2.2 and Definition 2.4.

4. STABILITY OF SSD AND δ-SSD PORTFOLIO EFFICIENCY
CLASSIFICATION

In previous sections a fixed scenario matrix was considered and all portfolio efficiency
tests were done for this scenario matrix. Unfortunately, usually we do not have
perfect information about the distribution of returns. Therefore, the stability of
SSD portfolio efficiency and δ-SSD portfolio efficiency with respect to changes in the
scenario matrix is investigated in this section.

Since the SSD portfolio efficiency tests and the δ-SSD portfolio efficiency test are
derived under the assumption of equiprobable scenarios collected in matrix X we will



Measuring of SSD Portfolio Efficiency 495

consider only perturbation matrices Xp of the original matrix X which have exactly
T rows, that is, we admit only approximations with T equiprobable scenarios. Let
Xp be the set of all such perturbation matrices. In this section we analyze how the
results of the SSD and δ-SSD portfolio efficiency test for a given portfolio depend on
the original scenario matrix X and which other matrices Xp from a neighbourhood5

of X guarantee the SSD or δ-SSD portfolio efficiency of the given portfolio.
Let matrix Υ = {υij}

T
i,j=1 be defined as Υ = Xp−X . Let D(X, Xp) = maxi,j |υij |

denote a distance between matrices X and Xp on Xp. We introduce a new measure
of δ-SSD portfolio efficiency as a measure of stability.

Definition 4.1. The δ-SSD portfolio efficiency measure γδ of δ-SSD efficient port-
folio τ ∈ Λ is defined as the optimal value of the following optimization problem:

γδ(τ ) = max ε (8)

s.t. τ is δ − SSD efficient for all Xp ∈ Xp such that D(X, Xp) ≤ ε.

This measure gives us information how large is the neighborhood of X such
that for all matrices from this neighborhood the portfolio τ is classified as δ-SSD
efficient. The problem (8) consists of infinitely many δ-SSD efficiency constraints.
Moreover, according to the Lemma 3.2, each constraint involves a maximization
problem what makes problem (8) practically unsolvable. Therefore we reinterpret
the δ-SSD portfolio efficiency measure for a given δ-SSD efficient portfolio τ ∈ Λ as
the minimal distance between the original matrix X and any other matrix Xp that
makes portfolio τ δ-SSD inefficient, that is,

γδ(τ ) = min
Xp∈Xp

D(X, Xp) (9)

s.t. τ is δ − SSD inefficient for Xp.

Using Lemma 3.2, the SSD portfolio efficiency measure γδ(τ ) can be computed in a
much less computationally demanding way:

γδ(τ ) = min
λ∈Λ,Xp∈Xp

D(X, Xp) (10)

s.t. Xλ − WXτ ≥ 0
T

∑

t=1

(

xt
λ − xt

τ
)

≥ δ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T.

Since Υ = Xp −X and D(X, Xp) = maxi,j |υij | the measure γδ(τ ) can be computed
using the following non-linear program.

5for a given metric on Xp
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γδ(τ ) = min
λ∈Λ,Υ,ε

ε (11)

s.t. (X + Υ)λ − W (X + Υ)τ ≥ 0
T

∑

t=1

(

(xt + υ
t)λ − (xt + υ

t)τ
)

≥ δ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T

−ε ≤ υij ≤ ε i, j = 1, 2, . . . , T,

where υ
t = (υt1, υt2, . . . , υtT ) is the tth row of matrix Υ. For a given portfolio τ we

have γδ(τ ) ≥ 0 for all δ > 0. Moreover, if δ1 < δ2 then the set of feasible solutions
of (11) is larger for δ1 than for δ2 and consequently γδ1

(τ ) ≤ γδ2
(τ ). Therefore, we

can define a measure of SSD efficiency in the following way.

Definition 4.2. The SSD portfolio efficiency measure γ of SSD efficient portfolio
τ ∈ Λ is defined as: γ(τ ) = limδ→0+ γδ(τ ) = infδ>0 γδ(τ ).

4.1. One scenarion perturbation – A given scenario

Assume that only the tth scenario can be changed, that is υij = 0 for all i 6= t. Then
D(X, Xp) = maxj |υtj | and the corresponding δ-SSD efficiency measure γt

δ is defined
as

γt
δ(τ ) = min

λ∈Λ,Υ,ε
ε (12)

s.t. (X + Υ)λ − W (X + Υ)τ ≥ 0
T

∑

t=1

(

(xt + υ
t)λ − (xt + υ

t)τ
)

≥ δ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T

−ε ≤ υtj ≤ ε j = 1, 2, . . . , T

υij = 0 i 6= t j = 1, 2, . . . , T.

Similarly to the complete scenario perturbation case, the SSD efficiency measure for
one scenario perturbation is: γt(τ ) = limδ→0+ γδ(τ ) = infδ>0 γδ(τ ).

4.2. One scenarion perturbation – An arbitrary scenario

In this section we still assume that only one scenario can be changed. Contrary to
the previous case, now we do not prescribe which scenario it is. Therefore we again
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consider D(X, Xp) = maxi,j |υij | as in the general case and the δ-SSD portfolio
efficiency measure for this situation is defined as:

γδ(τ ) = min
λ∈Λ,Υ,ε

ε (13)

s.t. (X + Υ)λ − W (X + Υ)τ ≥ 0
T

∑

t=1

(

(xt + υ
t)λ − (xt + υ

t)τ
)

≥ δ

T
∑

j=1

wij = 1,

T
∑

i=1

wij = 1, wij ≥ 0 i, j = 1, 2, . . . , T

−ε ≤ υij ≤ ε i, j = 1, 2, . . . , T

υij ≤ Myi j = 1, 2, . . . , T

T
∑

i=1

yi = 1, yi ∈ {0, 1},

where M is a sufficiently large constant, for example M = 2
∑T

i,j=1 |xij |. Problem
(13) is more computationally demanding than (12) because T binary variables are
added. The corresponding SSD efficiency measure is again defined as the limiting
case: γ(τ ) = limδ→0+ γδ(τ ) = infδ>0 γδ(τ ).

5. EMPIRICAL APPLICATION

To illustrate our portfolio efficiency measuring, we apply it to the US stock market
data in order to compute the δ-SSD portfolio efficiency measure γδ, and SSD port-
folio efficiency measure γ of two SSD efficient portfolios. The investment universe
of stocks is proxied by the well-known six value-weighted Fama and French portfo-
lios. The last considered asset is the riskless asset that is proxied by the one-year
US government bond index from Ibbotson Associates. We consider yearly excess
returns from 1963 to 2002 (40 annual observations). Excess returns are computed
by subtracting the riskless rate from the nominal returns, that is, the riskless asset
always has a return of zero. Table 1 shows descriptive statistics for our data set.

We start with identifying two SSD efficient portfolios. Since short sales are not
allowed and no two assets have the same mean, the portfolio consisting only of
the asset with the highest mean τ 1 = (0, 0, 1, 0, 0, 0, 0) is obviously SSD efficient.
Ogryczak & Ruszczyński [15] proved that several mean-risk models are consistent
with SSD relation, e. g., for CVaR as a measure of risk. Therefore, if mean-CVaR
model has an unique optimal solution then it is a SSD efficient portfolio. Solving
mean-CVaR model with α = 0.95 we identified the second SSD efficient portfolio
τ 2 = (0, 0, 0.385, 0.016, 0, 0.013, 0.586) were the minimal required mean was equal to
the mean of market portfolio proxied by the CRSP all-share index. We solve prob-
lems (11) for both SSD efficient portfolios and five levels δ = 1, 0.1, 0.01, 0.001, 0.0001
using GAMS system (solver COINIPOPT). The results are presented in Table 2.
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Table 1. Descriptive statistics for 6 Famma and French portfolios

formed on market capitalization of equity and book-to-market equity ratio

(SG = small growth, SN = small neutral, SV = small value,

BG = big growth, BN = big neutral and BV = big value).

Mean St.dev. Skew. Kurt. Min. Max.
SG 5.309 28.520 0.323 0.175 –49.28 83.68
SN 11.301 22.728 –0.308 0.062 –37.38 65.48
SV 13.861 23.158 –0.373 –0.222 –33.86 61.14
BG 5.303 18.820 –0.317 –0.537 –40.49 34.67
BN 6.340 16.120 –0.241 –0.090 –34.13 34.73
BV 8.946 17.723 –0.690 –0.026 –34.24 40.34

Table 2. δ-SSD efficiency measures for portfolio τ 1 and τ 2.

δ = 1 δ = 0.1 δ = 0.01 δ = 0.001 δ = 0.0001
γδ(τ 1) 1.369 1.369 1.369 1.369 1.369
γδ(τ 2) 0.937 0.412 0.393 0.388 0.388

From Table 2 we can see that γδ(τ 1) = 1.369 for all δ ∈ 〈1, 0.0001〉 and therefore
we can expect that γ(τ 1) = infδ>0 γδ(τ 1) = 1.369. To prove it, we apply the
modified Kousmanen test where we use X + Υ instead of X and we include the
additional constraints:6

−(1.369− ξ) ≤ υij ≤ (1.369 − ξ) i, j = 1, 2, . . . , T, (14)

where ξ is a sufficiently small number,7 in our case we choose ξ = 0.0005. This
modified test tries to identify a SSD dominating portfolio for any feasible perturbed
scenario matrix. We can find that the test fails to identify a SSD dominating portfolio
for completely perturbed scenario matrices Xp with D(X, Xp) ≤ 1.3685. Therefore,
we can conclude that the SSD portfolio efficiency measure of portfolio τ 1 is equal to
1.369. By analogy, we can easily check that γ(τ 2) = 0.388 where we use ξ = 0.0005
and

−(0.388− ξ) ≤ υij ≤ (0.388 − ξ) i, j = 1, 2, . . . , T.

instead of (14).
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